Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Indian J Med Res ; 159(2): 241-245, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517219

RESUMO

BACKGROUND OBJECTIVES: High-altitude headache (HAH) and headache in acute mountain sickness (AMS) are common among lowlanders ascending to the high altitude and are often confused with one another. A pilot study was undertaken to analyze HAH and AMS cases in Indian lowlanders ascending to Leh city (3500 m) in western Himalayas. METHODS: A total number of 1228 Indian lowlanders, who ascended (fresh and re-inductees) by air and acclimatized, participated in this pilot study. The intensity of headache was assessed by the Visual Analogue Score. The parameters of HAH as per the International Classification of Headache Disorders-3 and 2018 Revised Lake Louise Questionnaire (LLQ) were used to differentiate HAH and AMS. RESULTS: Out of 1228 cases, 78 (6.4%) cases had headache, of which 24 (1.95%) cases were HAH only, 40 (3.25%) cases AMS only and 14 (1.14%) cases were defined as both HAH and AMS. There was a significant difference in heart rate [F (2,51) = (4.756), P =0.01] between these groups. It also showed a difference in the correlation between the parameters within the groups. The Odd's Ratio of AMS in fresh and re-inductees was found to be 4.5 and for HAH it was 4.33. INTERPRETATION CONCLUSIONS: The findings of this study suggest that LLQ has a tendency of overestimating AMS by including HAH cases. Furthermore differential parameters exhibit differences when AMS and HAH are considered separately. Re-inductees showed a lower incidence of HAH and AMS.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/complicações , Doença da Altitude/diagnóstico , Doença da Altitude/epidemiologia , Altitude , 60479 , Projetos Piloto , Doença Aguda , Cefaleia/epidemiologia , Cefaleia/etiologia , Inquéritos e Questionários
2.
Travel Med Infect Dis ; 58: 102689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295966

RESUMO

High altitude retinopathy (HAR) is a common ocular disorder that occurs on ascent to high altitude. There are many clinical symptoms, retinal vascular dilatation, retinal edema and hemorrhage are common. These usually do not or slightly affect vision; rarely, severe cases develop serious or permanent vision loss. At present, the research progress of HAR mainly focuses on hemodynamic changes, blood-retinal barrier damage, oxidative stress and inflammatory response. Although the related studies on HAR are limited, it shows that HAR still belongs to hypoxia, and hypobaric hypoxia plays an aggravating role in promoting the development of the disease. Various studies have demonstrated the correlation of HAR with acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), so a deeper understanding of HAR is important. The slow ascent rates and ascent altitude are the key to preventing any altitude sickness. Research on traditional chinese medicine (TCM) and western medicine has been gradually carried out. Further exploration of the pathogenesis and prevention strategies of HAR will provide better guidance for doctors and high-altitude travelers.


Assuntos
Doença da Altitude , Edema Encefálico , Doenças Retinianas , Humanos , Altitude , Doença da Altitude/complicações , Doença da Altitude/diagnóstico , Doenças Retinianas/complicações , Hipóxia , Doença Aguda , Edema Encefálico/diagnóstico , Edema Encefálico/etiologia
3.
Thromb Res ; 234: 142-150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241764

RESUMO

Hypoxia plays an important role in several pathologies, e.g. chronic obstructive pulmonary disease and obstructive sleep apnea syndrome, and is linked to an increased thrombosis risk. Furthermore, oxygen deprivation is associated with hypercoagulability. In this study, we investigated the effect of gender and exercise on the coagulation potential under hypoxic conditions at high altitude by assessing thrombin generation (TG) and platelet activation. Hereto, ten healthy volunteers were included (50 % male, median age of 27.5 years). The measurements were conducted first at sea level and then twice at high altitude (3883 m), first after a passive ascent by cable car and second after an active ascent by a mountain hike. As expected, both the passive and active ascent resulted in a decreased oxygen saturation and an increased heart rate at high altitude. Acute mountain sickness symptoms were observed independently of the ascent method. After the active ascent, platelet, white blood cell and granulocyte count were increased, and lymphocytes were decreased, without a gender-related difference. FVIII and von Willebrand factor were significantly increased after the active ascent for both men and women. Platelet activation was reduced and delayed under hypobaric conditions, especially in women. TG analysis showed a prothrombotic trend at high altitude, especially after the active ascent. Women had a hypercoagulable phenotype, compared to men at all 3 timepoints, indicated by a higher peak height and endogenous thrombin potential (ETP), and shorter lag time and time-to-peak. In addition, ETP and peak inhibition by thrombomodulin was lower in women after the active ascent, compared to men. Interestingly, data normalisation for subject baseline values indicated an opposing effect of altitude-induced hypoxia on α2-macroglobulin levels and TG lag time between men and women, decreasing in men and increasing in women. We conclude that hypoxia increases TG, as well as FVIII and VWF levels in combination with exercise. In contrast, platelets lose their responsiveness at high altitude, which is most pronounced after heavy exercise. Women had a more pronounced prothrombotic phenotype compared to men, which we theorize is counterbalanced under hypobaric conditions by decreased platelet activation.


Assuntos
Doença da Altitude , Trombofilia , Humanos , Masculino , Feminino , Adulto , Altitude , Trombina , Hipóxia/complicações , Doença da Altitude/complicações , Doença da Altitude/diagnóstico , Fator de von Willebrand , Trombofilia/etiologia
4.
BMC Med ; 22(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166913

RESUMO

BACKGROUND: We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS: This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS: The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS: The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05023941.


Assuntos
Doença da Altitude , Precondicionamento Isquêmico , Humanos , Doença da Altitude/prevenção & controle , Doença da Altitude/diagnóstico , Acetazolamida , Estudos Prospectivos , Doença Aguda , Hipóxia/prevenção & controle
5.
Comb Chem High Throughput Screen ; 27(1): 168-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37165489

RESUMO

BACKGROUND: High altitude pulmonary edema (HAPE) is a serious mountain sickness with certain mortality. Its early diagnosis is very important. However, the mechanism of its onset and progression is still controversial. AIM: This study aimed to analyze the HAPE occurrence and development mechanism and search for prospective biomarkers in peripheral blood. METHODS: The difference genes (DEGs) of the Control group and the HAPE group were enriched by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and then GSEA analysis was performed. After identifying the immune-related hub genes, QPCR was used to verify and analyze the hub gene function and diagnostic value with single-gene GSEA and ROC curves, and the drugs that acted on the hub gene was found in the CTD database. Immune infiltration and its association with the hub genes were analyzed using CIBERSORT. Finally, WGCNA was employed to investigate immune invasion cells' significantly related gene modules, following enrichment analysis of their GO and KEGG. RESULTS: The dataset enrichment analysis, immune invasion analysis and WGCNA analysis showed that the occurrence and early progression of HAPE were unrelated to inflammation. The hub genes associated with immunity obtained with MCODE algorithm of Cytoscape were JAK2 and B2M.. RT-qPCR and ROC curves confirmed that the hub gene B2M was a specific biomarker of HAPE and had diagnostic value, and single-gene GSEA analysis confirmed that it participated in MHC I molecule-mediated antigen presentation ability decreased, resulting in reduced immunity. CONCLUSION: Occurrence and early progression of high altitude pulmonary edema may not be related to inflammation. B2M may be a new clinical potential biomarker for HAPE for early diagnosis and therapeutic evaluation as well as therapeutic targets, and its decrease may be related to reduced immunity due to reduced ability of MCH I to participate in antigen submission.


Assuntos
Doença da Altitude , Hipertensão Pulmonar , Edema Pulmonar , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/genética , Altitude , Biomarcadores , Inflamação , Biologia Computacional
6.
Wilderness Environ Med ; 35(1_suppl): 2S-19S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37833187

RESUMO

To provide guidance to clinicians about best practices, the Wilderness Medical Society (WMS) convened an expert panel to develop evidence-based guidelines for prevention, diagnosis, and treatment of acute mountain sickness, high altitude cerebral edema, and high altitude pulmonary edema. Recommendations are graded based on the quality of supporting evidence and the balance between the benefits and risks/burdens according to criteria put forth by the American College of Chest Physicians. The guidelines also provide suggested approaches for managing each form of acute altitude illness that incorporate these recommendations as well as recommendations on how to approach high altitude travel following COVID-19 infection. This is an updated version of the original WMS Consensus Guidelines for the Prevention and Treatment of Acute Altitude Illness published in Wilderness & Environmental Medicine in 2010 and the subsequently updated WMS Practice Guidelines for the Prevention and Treatment of Acute Altitude Illness published in 2014 and 2019.


Assuntos
Doença da Altitude , COVID-19 , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/prevenção & controle , Altitude , COVID-19/diagnóstico , COVID-19/prevenção & controle , Consenso , Sociedades Médicas , Teste para COVID-19
7.
BMJ Open ; 13(11): e074161, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923352

RESUMO

OBJECTIVE: To develop the first prediction model based on the common clinical symptoms of high-altitude pulmonary edema (HAPE), enabling early identification and an easy-to-execute self-risk prediction tool. METHODS: A total of 614 patients who consulted People's Hospital of Tibet Autonomous Region between January 2014 and April 2022 were enrolled. Out of those, 508 patients (416 males and 92 females) were diagnosed with HAPE and 106 were patients without HAPE (33 females and 72 males). They were randomly distributed into training (n=431) and validation (n=182) groups. Univariate and multivariate analysis were used to screen predictors of HAPE selected from the 36 predictors; nomograms were established based on the results of multivariate analysis. The receiver operating characteristic curve (ROC) was developed to obtain the area under the ROC curve (AUC) of the predictive model, and its predictive power was further evaluated by calibrating the curve, while the Decision Curve Analysis (DCA) was developed to evaluate the clinical applicability of the model, which was visualised by nomogram. RESULTS: All six predictors were significantly associated with the incidence of HAPE, and two models were classified according to whether the value of SpO2 (percentage of oxygen in the blood) was available in the target population. Both could accurately predict the risk of HAPE. In the validation cohort, the AUC of model 1 was 0.934 with 95% CI (0.848 to 1.000), and model 2 had an AUC of 0.889, 95% CI (0.779 to 0.999). Calibration plots showed that the predicted and actual HAPE probabilities fitted well with internal validation, and the clinical decision curve shows intervention in the risk range of 0.01-0.98, resulting in a net benefit of nearly 99%. CONCLUSION: The recommended prediction model (nomogram) could estimate the risk of HAPE with good precision, high discrimination and possible clinical applications for patients with HAPE. More importantly, it is an easy-to-execute scoring tool for individuals without medical professionals' support.


Assuntos
Doença da Altitude , Edema Pulmonar , Feminino , Masculino , Humanos , Altitude , Edema Pulmonar/diagnóstico , Edema Pulmonar/epidemiologia , Edema Pulmonar/etiologia , Estudos Retrospectivos , Doença da Altitude/diagnóstico , Doença da Altitude/epidemiologia , Nomogramas
8.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3594-3604, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37805840

RESUMO

Acute mountain sickness (AMS) is a clinical syndrome of multi-system physiological disorder after acute exposure to low pressure and low oxygen at high altitude. Quantitative proteomics can systematically quantify and describe protein composition and dynamic changes. In recent years, quantitative proteomics has been widely used in the prevention, diagnosis, treatment and pathogenesis of many diseases. This review summarizes the progress of quantitative proteomics techniques and its application in the prevention, diagnosis, treatment of AMS and mechanisms of rapidly acclimatizing to plateau, in order to provide a reference for the pathogenesis, early intervention, clinical treatment and proteomic research of AMS.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/etiologia , Doença da Altitude/prevenção & controle , Proteômica , Doença Aguda , Oxigênio/metabolismo
9.
Front Immunol ; 14: 1237465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841248

RESUMO

Background: Ascending to high altitude can induce a range of physiological and molecular alterations, rendering a proportion of lowlanders unacclimatized. The prediction of acute mountain sickness (AMS) prior to ascent to high altitude remains elusive. Methods: A total of 40 participants were enrolled for our study in the discovery cohort, and plasma samples were collected from all individuals. The subjects were divided into severe AMS-susceptible (sAMS) group, moderate AMS-susceptible (mAMS) group and non-AMS group based on the Lake Louise Score (LLS) at both 5000m and 3700m. Proteomic analysis was conducted on a cohort of 40 individuals to elucidate differentially expressed proteins (DEPs) and associated pathways between AMS-susceptible group and AMS-resistant group at low altitude (1400m) and middle high-altitude (3700m). Subsequently, a validation cohort consisting of 118 individuals was enrolled. The plasma concentration of selected DEPs were quantified using ELISA. Comparative analyses of DEPs among different groups in validation cohort were performed, followed by Receiver Operating Characteristic (ROC) analysis to evaluate the predictive efficiency of DEPs for the occurrence of AMS. Results: The occurrence of the AMS symptoms and LLS differed significantly among the three groups in the discovery cohort (p<0.05), as well as in the validation cohort. Comparison of plasma protein profiles using GO analysis revealed that DEPs were primarily enriched in granulocyte activation, neutrophil mediated immunity, and humoral immune response. The comparison of potential biomarkers between the sAMS group and non-AMS group at low altitude revealed statistically higher levels of AAT, SAP and LTF in sAMS group (p=0.01), with a combined area under the curve(AUC) of 0.965. Compared to the mAMS group at low altitude, both SAP and LTF were found to be significantly elevated in the sAMS group, with a combined AUC of 0.887. HSP90-α and SAP exhibited statistically higher levels in the mAMS group compared to the non-AMS group at low altitude, with a combined AUC of 0.874. Conclusion: Inflammatory and immune related biological processes were significantly different between AMS-susceptible and AMS-resistant groups at low altitude and middle high-altitude. SAP, AAT, LTF and HSP90-α were considered as potential biomarkers at low altitude for the prediction of AMS.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/epidemiologia , Altitude , Proteômica , Doença Aguda , Biomarcadores
10.
PLoS One ; 18(9): e0291060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708123

RESUMO

OBJECTIVE: To assess the prevalence of acute mountain sickness (AMS) in 1370 mountaineers at four different altitudes in the Western Alps. We also examined the influence of potential risk factors and the knowledge about AMS on its prevalence. METHODS: In this observational cross-sectional study AMS was assessed on the day of ascent by the Lake Louise score (LLS, cut-off ≥3, version 2018) and the AMS-Cerebral (AMS-C) score of the environmental symptom questionnaire (cut-off ≥0,70). The latter was also obtained in the next morning. Knowledge regarding AMS and high-altitude cerebral edema (HACE) and the potential risk factors for AMS were evaluated by questionnaires. RESULTS: On the day of ascent, the prevalence of AMS assessed by the LLS and AMS-C score was 5.8 and 3.9% at 2850 m, 2.1 and 3.1% at 3050 m, 14.8 and 10.1% at 3650 m, and 21.9 and 15% at 4559 m, respectively. The AMS prevalence increased overnight from 10.1 to 14.5% and from 15 to 25.2% at 3650 m and 4559 m, respectively, and was unchanged at 2850 m and 3050 m. A history of AMS, higher altitude, lower degree of pre-acclimatization, and younger age were identified as risk factors for developing AMS. Slow ascent was weakly associated with AMS prevalence, and sex and knowledge about AMS and HACE were indistinct. CONCLUSION: AMS is common at altitudes ≥ 3650 m and better knowledge about AMS and HACE was not associated with less AMS in mountaineers with on average little knowledge.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/epidemiologia , Prevalência , Doença Aguda , Fatores de Risco , Altitude
11.
Clin Biochem ; 119: 110631, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572984

RESUMO

BACKGROUND: Hypoxia leads to different concentrations of the bicarbonate buffer system in Tibetan people. Indirect methods were used to establish the reference interval (RI) for total carbon dioxide (tCO2) based on big data from the adult population of Tibet, a high-altitude area in Western China. METHODS: Anonymous tCO2 test data (n = 442,714) were collected from the People's Hospital of the Tibet Autonomous Region from January 2018, to December 2021. Multiple linear regression and variance component analyses were performed to assess the effects of sex, age, and race on tCO2 levels. Indirect methods, including Hoffmann, Bhattacharya, expectation maximization (EM), kosmic and refineR, were used to calculate the total RI and ethnicity-partitioned RI. RESULTS: A total of 230,821 real-world tCO2 test results were eligible. Sex, age, and race were significantly associated with the tCO2 levels. The total and ethnically-partitioned RIs estimated using the five indirect methods were comparable. The total RI of tCO2 was 14-24 mmol/L (calculated using Hoffmann and refineR) and 15-24 mmol/L (Bhattacharya, EM and kosmic). For Han nationality, the RIs were 14-25 mmol/L (calculated using Hoffmann and Bhattacharya), 16-23 mmol/L (EM), 15-24 mmol/L (kosmic), and 14.2-24.5 mmol/L (refineR). For the Tibetan population, the RIs were 14-24 mmol/L (calculated using Hoffmann and refineR), 15-24 mmol/L (Bhattacharya and kosmic), and 15-23 mmol/L (EM). The established RIs were significantly lower than those living at lower altitudes area (22-29 mmol/L) that was provided by the manufacturer. CONCLUSION: The tCO2 RI of the populations living on the Tibetan Plateau was significantly lower than those at the lower altitudes. The RIs established using indirect methods are suitable for clinical applications in Tibet.


Assuntos
Altitude , Dióxido de Carbono , População do Leste Asiático , Hipóxia , Adulto , Humanos , Doença da Altitude/sangue , Doença da Altitude/diagnóstico , Doença da Altitude/etnologia , Dióxido de Carbono/sangue , População do Leste Asiático/etnologia , Hipóxia/sangue , Hipóxia/diagnóstico , Hipóxia/etnologia , Estudos Retrospectivos , Tibet
12.
Clin Exp Hypertens ; 45(1): 2238923, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37552638

RESUMO

OBJECTIVES: Hypoxia is a physiological state characterized by reduced oxygen levels in organs and tissues. It is a common clinicopathological process and a major cause of health problems in highland areas.  Heart rate variability (HRV) is a measure of the balance in autonomic innervation to the heart. It provides valuable information on the regulation of the cardiovascular system by neurohumoral factors, and changes in HRV reflect the complex interactions between multiple systems. In this review, we provide a comprehensive overview of the relationship between high-altitude hypoxia and HRV. We summarize the different mechanisms of diseases caused by hypoxia and explore the changes in HRV across various systems. Additionally, we discuss relevant pharmaceutical interventions. Overall, this review aims to provide research ideas and assistance for in-depth studies on HRV. By understanding the intricate relationship between high-altitude hypoxia and HRV, we can gain insights into the underlying mechanisms and potential therapeutic approaches to mitigate the effects of hypoxia on cardiovascular and other systems. METHODS: The relevant literature was collected systematically from scientific database, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Baidu Scholar, as well as other literature sources, such as classic books of hypoxia. RESULTS: There is a close relationship between heart rate variability and high-altitude hypoxia. Heart rate variability is an indicator that evaluates the impact of hypoxia on the cardiovascular system and other related systems. By improving the observation of HRV, we can estimate the progress of cardiovascular diseases and predict the impact on other systems related to cardiovascular health. At the same time, changes in heart rate variability can be used to observe the efficacy of preventive drugs for altitude related diseases. CONCLUSIONS: HRV can be used to assess autonomic nervous function under various systemic conditions, and can be used to predict and monitor diseases caused by hypoxia at high altitude. Investigating the correlation between high altitude hypoxia and heart rate variability can help make HRV more rapid, accurate, and effective for the diagnosis of plateau-related diseases.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Altitude , Frequência Cardíaca/fisiologia , Hipóxia , Oxigênio
13.
JMIR Mhealth Uhealth ; 11: e43340, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410528

RESUMO

BACKGROUND: Cardiorespiratory fitness plays an important role in coping with hypoxic stress at high altitudes. However, the association of cardiorespiratory fitness with the development of acute mountain sickness (AMS) has not yet been evaluated. Wearable technology devices provide a feasible assessment of cardiorespiratory fitness, which is quantifiable as maximum oxygen consumption (VO2max) and may contribute to AMS prediction. OBJECTIVE: We aimed to determine the validity of VO2max estimated by the smartwatch test (SWT), which can be self-administered, in order to overcome the limitations of clinical VO2max measurements. We also aimed to evaluate the performance of a VO2max-SWT-based model in predicting susceptibility to AMS. METHODS: Both SWT and cardiopulmonary exercise test (CPET) were performed for VO2max measurements in 46 healthy participants at low altitude (300 m) and in 41 of them at high altitude (3900 m). The characteristics of the red blood cells and hemoglobin levels in all the participants were analyzed by routine blood examination before the exercise tests. The Bland-Altman method was used for bias and precision assessment. Multivariate logistic regression was performed to analyze the correlation between AMS and the candidate variables. A receiver operating characteristic curve was used to evaluate the efficacy of VO2max in predicting AMS. RESULTS: VO2max decreased after acute high altitude exposure, as measured by CPET (25.20 [SD 6.46] vs 30.17 [SD 5.01] at low altitude; P<.001) and SWT (26.17 [SD 6.71] vs 31.28 [SD 5.17] at low altitude; P<.001). Both at low and high altitudes, VO2max was slightly overestimated by SWT but had considerable accuracy as the mean absolute percentage error (<7%) and mean absolute error (<2 mL·kg-1·min-1), with a relatively small bias compared with VO2max-CPET. Twenty of the 46 participants developed AMS at 3900 m, and their VO2max was significantly lower than that of those without AMS (CPET: 27.80 [SD 4.55] vs 32.00 [SD 4.64], respectively; P=.004; SWT: 28.00 [IQR 25.25-32.00] vs 32.00 [IQR 30.00-37.00], respectively; P=.001). VO2max-CPET, VO2max-SWT, and red blood cell distribution width-coefficient of variation (RDW-CV) were found to be independent predictors of AMS. To increase the prediction accuracy, we used combination models. The combination of VO2max-SWT and RDW-CV showed the largest area under the curve for all parameters and models, which increased the area under the curve from 0.785 for VO2max-SWT alone to 0.839. CONCLUSIONS: Our study demonstrates that the smartwatch device can be a feasible approach for estimating VO2max. In both low and high altitudes, VO2max-SWT showed a systematic bias toward a calibration point, slightly overestimating the proper VO2max when investigated in healthy participants. The SWT-based VO2max at low altitude is an effective indicator of AMS and helps to better identify susceptible individuals following acute high-altitude exposure, particularly by combining the RDW-CV at low altitude. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2200059900; https://www.chictr.org.cn/showproj.html?proj=170253.


Assuntos
Doença da Altitude , Humanos , Doença Aguda , Altitude , Doença da Altitude/diagnóstico , Teste de Esforço , Consumo de Oxigênio
14.
Physiol Rep ; 11(9): e15623, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144546

RESUMO

Previous research has shown that ≤60 min hypoxic exposure improves subsequent glycaemic control, but the optimal level of hypoxia is unknown and data are lacking from individuals with overweight. We undertook a cross-over pilot feasibility study investigating the effect of 60-min prior resting exposure to different inspired oxygen fractions (CON FI O2  = 0.209; HIGH FI O2  = 0.155; VHIGH FI O2  = 0.125) on glycaemic control, insulin sensitivity, and oxidative stress during a subsequent oral glucose tolerance test (OGTT) in males with overweight (mean (SD) BMI = 27.6 (1.3) kg/m2 ; n = 12). Feasibility was defined by exceeding predefined withdrawal criteria for peripheral blood oxygen saturation (SpO2 ), partial pressure of end-tidal oxygen or carbon dioxide and acute mountain sickness (AMS), and dyspnoea symptomology. Hypoxia reduced SpO2 in a stepwise manner (CON = 97(1)%; HIGH = 91(1)%; VHIGH = 81(3)%, p < 0.001), but did not affect peak plasma glucose concentration (CON = 7.5(1.8) mmol∙L-1 ; HIGH = 7.7(1.1) mmol∙L-1 ; VHIGH = 7.7(1.1) mmol∙L-1 ; p = 0.777; η2  = 0.013), plasma glucose area under the curve, insulin sensitivity, or metabolic clearance rate of glucose (p > 0.05). We observed no between-conditions differences in oxidative stress (p > 0.05), but dyspnoea and AMS symptoms increased in VHIGH (p < 0.05), with one participant meeting the withdrawal criteria. Acute HIGH or VHIGH exposure prior to an OGTT does not influence glucose homeostasis in males with overweight, but VHIGH is associated with adverse symptomology and reduced feasibility.


Assuntos
Doença da Altitude , Resistência à Insulina , Masculino , Humanos , Teste de Tolerância a Glucose , Estudos de Viabilidade , Glicemia , Sobrepeso , Hipóxia , Doença da Altitude/diagnóstico , Oxigênio , Doença Aguda , Glucose , Dispneia , Altitude
15.
J Sports Med Phys Fitness ; 63(8): 927-933, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154537

RESUMO

BACKGROUND: Since trips to high altitude have become popular, reports on clinical and environmental characteristics during expeditions to popular destinations are needed. METHODS: A group of 15 healthy adults was monitored during a trek to Capanna Margherita (4556 m). A hypoxic stress test was applied before the expedition started. Environmental characteristics were acquired with a portable device. Vital signs were compared at low and high altitude, and altitude sickness was diagnosed by the Lake Louise scoring system. Ocular symptoms and intraocular pressure were recorded. RESULTS: Temperature ranged from -3.5 to 31.3 °C and relative humidity from 36 to 95% during the trek. Acute mountain sickness was diagnosed in 40% of participants, more frequently in women, and slightly associated with a greater drop in SpO2. Heart rate and blood pressure increased, while peripheral saturation and intraocular pressure decreased, in response to altitude hypoxia. CONCLUSIONS: Rapid ascents, as in the most common expedition plans, should be carefully supervised because of the common occurrence of AMS, especially in women. Among organ districts, the eye should deserve more attention in high-altitude medicine. Analyses of environmental conditions, together with predictive methods and early identification of health-threatening conditions, are of great value in supporting further recreational, professional and scientific expeditions to the most intriguing altitude sites.


Assuntos
Doença da Altitude , Adulto , Humanos , Feminino , Doença da Altitude/diagnóstico , Altitude , Hipóxia , Doença Aguda , Frequência Cardíaca/fisiologia
17.
Clin Sports Med ; 42(3): 441-461, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37208058

RESUMO

With the increase in outdoor events, there is an inevitable rise in climate-related environmental emergencies. Heat exposure can place athletes at risk for life-threatening heatstroke which requires emergent diagnosis and rapid in-field management. Cold exposure can lead to hypothermia, frostbite, and other nonfreezing injuries that require prompt evaluation and management to minimize morbidity and mortality. Altitude exposure can lead to acute mountain sickness or other serious neurologic or pulmonary emergencies. Finally, harsh climate exposure can be life-threatening and require appropriate prevention and event planning.


Assuntos
Doença da Altitude , Temperatura Alta , Humanos , Emergências , Altitude , Doença da Altitude/diagnóstico , Doença da Altitude/prevenção & controle , Atletas
18.
Eur J Sport Sci ; 23(10): 2002-2010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37051668

RESUMO

Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 µg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1ß (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.


Assuntos
Doença da Altitude , Esforço Físico , Humanos , Hipóxia , Doença da Altitude/complicações , Doença da Altitude/diagnóstico , Doença da Altitude/metabolismo , Altitude , Inflamação
19.
Am J Med Sci ; 365(6): 510-519, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921671

RESUMO

BACKGROUND: Field studies have reported conflicting results regarding changes in biomarkers at high altitude. This study measured temporal changes in biomarkers and compared the differences between individuals with and without acute mountain sickness (AMS). MATERIALS AND METHODS: This study included 34 nonacclimatized healthy participants. Ten-milliliters of blood were collected at four time points: 3 days before ascent (T0), on two successive nights at 3150 m (T1 and T2), and 2 days after descent (T3). Participants were transported by bus from 555 m to 3150 m within 3 hours. AMS was diagnosed using the self-reported Lake Louise Scoring (LLS) questionnaire. RESULTS: Compared with T0, significant increases in E-selectin and decreases in vascular endothelial growth factor (VEGF) levels were observed at high altitude. Significantly increased C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), and S100 calcium-binding protein B (S100B) levels were observed at T2, and significantly decreased vascular cell adhesion molecule-1 (VCAM-1) levels were observed at T3. Eighteen (53%) participants developed AMS. Changes in E-selectin, CRP, MCP-1, and S100B levels were independent of AMS. Relative to individuals without AMS, those with AMS had significantly higher atrial natriuretic peptide (ANP) and VCAM-1 levels and lower plasminogen activator inhibitor-1 (PAI-1) levels at T1 and higher brain natriuretic peptide and lower VEGF and PAI-1 levels at T3. LLSs were positively correlated with ANP and VCAM-1 levels and negatively correlated with PAI-1 levels measured at T1. CONCLUSIONS: After acute ascent, individuals with and without AMS exhibited different trends in biomarkers associated with endothelial cell activation and natriuretic peptides.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Selectina E , Inibidor 1 de Ativador de Plasminogênio , Fator A de Crescimento do Endotélio Vascular , Molécula 1 de Adesão de Célula Vascular , Doença Aguda , Biomarcadores
20.
Ugeskr Laeger ; 185(13)2023 Mar 27.
Artigo em Dinamarquês | MEDLINE | ID: mdl-36999289

RESUMO

More and more people travel to high altitudes, some develop mountain sickness, a possible life-threatening condition. The most common and benign case of mountain sickness is acute mountain sicknes, this condition is easily treatable by descending or low dose aceatazolamide. Treatment is important to avoid development to the more severe cases of mountain sickness high-altitude cerebral oedema and high-altitude pulmonary oedema. These conditions require early recognition and treatment. This review gives an overview of available treatment of these conditions and how to avoid them in the first place.


Assuntos
Doença da Altitude , Edema Encefálico , Hipertensão Pulmonar , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/tratamento farmacológico , Doença da Altitude/prevenção & controle , Doença Aguda , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Viagem , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/tratamento farmacológico , Altitude
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...